Flip-Flops and Sequential Circuit Design

ECE 152A - Summer 2009

Reading Assignment

- Brown and Vranesic
- 7 Flip-Flops, Registers, Counters and a Simple Processor
- 7.5 T Flip-Flop
- 7.5.1 Configurable Flip-Flops
- 7.6 JK Flip-Flop
- 7.7 Summary of Terminology
- 7.8 Registers
- 7.8.1 Shift Register
- 7.8.2 Parallel-Access Shift Register

Reading Assignment

- Brown and Vranesic (cont)
- 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
- 7.9 Counters
- 7.9.1 Asynchronous Counters
- 7.9.2 Synchronous Counters
- 7.9.3 Counters with Parallel Load
- 7.10 Reset Synchronization

Reading Assignment

- Brown and Vranesic (cont)
- 7 Flip-Flops, Registers, Counters and a Simple Processor (cont)
- 7.11 Other Types of Counters
- 7.11.1 BCD Counter
- 7.11.2 Ring Counter
- 7.11.3 Johnson Counter
- 7.11.4 Remarks on Counter Design

Reading Assignment

- Brown and Vranesic (cont)
- 8 Synchronous Sequential Circuits
- 8.1 Basic Design Steps
- 8.1.1 State Diagram
- 8.1.2 State Table
- 8.1.3 State Assignment
- 8.1.4 Choice of Flip-Flops and Derivation of Next-State and Output Expressions
- 8.1.5 Timing Diagram
- 8.1.6 Summary of Design Steps

Reading Assignment

- Brown and Vranesic (cont)
- 8 Synchronous Sequential Circuits (cont)
- 8.2 State-Assignment Problem
- One-Hot Encoding
- 8.7 Design of a Counter Using the Sequential Circuit Approach
- 8.7.1 State Diagram and State Table for Modulo-8 Counter
- 8.7.2 State Assignment
- 8.7.3 Implementation Using D-Type Flip-Flops
- 8.7.4 Implementation Using JK-Type Flip-Flops
- 8.7.5 Example - A Different Counter

Reading Assignment

- Roth
- 11 Latches and Flip-Flops
- 11.5 S-R Flip-Flop
- 11.6 J-K Flip-Flop
- 11.7 T Flip-Flop
- 11.8 Flip-Flops with Additional Inputs
- 11.9 Summary
- 12 Registers and Counters
- 12.5 Counter Design Using S-R and J-K Flip-Flops
- 12.6 Derivation of Flip-Flop Input Equations - Summary

The JK Flip-Flop

- Allows $\mathrm{J}=\mathrm{K}=1$ condition
- Implemented with a gated SR latch and feedback of Q and Q^{*}
- Q toggles $\left(Q^{+}=Q^{\prime}\right)$ on $J=K=1$

The JK Flip-Flop (cont)

- Characteristic table and equation
- Karnaugh map of characteristic table
- Characteristic equation
- $Q^{+}=J Q^{\prime}+K^{\prime} Q$

The JK Flip-Flop (cont)

- Implementation using a D flip-flop
- Characteristic Function at D input

The JK Flip-Flop

- State table

	$N S\left(Q^{+}\right)$				
$P S$	(Q)	$J K=00$	01	10	
0	0	0	11	1	
1	1	0	1	0	

The JK Flip-Flop

- State diagram

The JK Flip-Flop

- With clock circuitry and timing
- Positive edge triggered JK flip-flop

The Master Slave JK Flip-Flop

- Master Slave JK Flip-Flop
- Rising edge triggered
- note CLK inverted to master

The Master Slave JK Flip-Flop

- Master Slave JK Flip-Flop
- Falling edge triggered
- note CLK (CP) inverted to slave

The Master Slave JK Flip-Flop

- Master active on CLK = 1
- Slave active on CLK = 0
- Latch data in master on CLK = 1
- Transfer data to slave (output) on CLK $=0$
- Timing Diagram Initial Conditions
$\square C L K=0, J=1, K=0, Y=0, Q=0$

The Master Slave JK Flip-Flop

- Timing Diagram

The JK Flip-Flop (cont)

- What happens if $\mathrm{J}=\mathrm{K}=1$ for an indefinite period of time (i.e., much greater than clock period)?
- Output oscillates at $1 / 2$ the frequency of the clock - Divide by two counter

The T (Toggle or Trigger) Flip-Flop

- Connect J and K inputs together
- Combined input " T "

The T Flip-Flop

- State Table

$\mathrm{NS}\left(\mathrm{Q}^{+}\right)$		
$\mathrm{PS}(\mathrm{Q})$	$\mathrm{T}=0$	$\mathrm{~T}=1$
0	0	1
1	1	0

The T Flip-Flop

- State Diagram

The T Flip-Flop (from JK/D)

Counter Design with T Flip-Flops

- 3 bit binary counter design example
- "State" refers to Q's of flip-flops
- 3 bits, 8 states
- Decimal 0 through 7
- No inputs
- Transition on every clock edge
- i.e., state changes on every clock edge
- Assume clocked, synchronous flip-flops

Counter Design with T Flip-Flops

- State Diagram

Counter Design with T Flip-Flops

- State table

	PS		NS		
A	B	C	A^{+}	B^{+}	C^{+}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Counter Design with T Flip-Flops

- Next State Maps

$A^{\prime}=A B^{\prime}+A C^{\prime}+A^{\prime} B C=D_{A}$
$\mathrm{B}^{+}=\mathrm{B}^{\prime} \mathrm{C}+\mathrm{BC} \mathrm{C}^{\prime}=\mathrm{D}_{\mathrm{B}}$
$\mathrm{C}^{+}=\mathrm{C}^{\prime}=\mathrm{D}_{\mathrm{C}}$

Counter Design with T Flip-Flops

- Using D flip-flops, inputs are derived directly from next state maps
- $\mathrm{D}=\mathrm{Q}^{+}$
- Using T flip flops
- Excitation table (used for design)
- $T=Q \times O R Q^{+}$
- Need to find inputs to T flip-flops
- Mapping state changes
- $Q \rightarrow Q+$ requires $T=$?

Counter Design with T Flip-Flops

- T Flip-Flop Excitation Table - T = Q XOR Q ${ }^{+}$

Q	Q^{+}	T
0	0	0
0	1	1
1	0	1
1	1	0

Counter Design with T Flip-Flops

- State Variable A
- $T_{A}=A^{+}(X O R) A$

Counter Design with T Flip-Flops

- State Variable B
- $T_{B}=B^{+}(X O R) B$

Counter Design with T Flip-Flops

- State Variable C
- $T_{C}=C^{+}(X O R) C$

Counter Design with T Flip-Flops

- Implement design using T Flip-Flops with asynchronous preset and clear
- Asynchronous preset (PRN) and clear (CLRN) override clock and other inputs
- Preset : $\mathrm{Q} \rightarrow 1$, Clear: $\mathrm{Q} \rightarrow 0$
- Used to initialize system (all flip-flops) to known state - Bubbles indicate "low true" or "active low"
- $T A=B C, T B=C, T C=1$

Counter Design with T Flip-Flops

- Schematic

Counter Design with T Flip-Flops

- Timing Diagram
- QA toggles when $B=C=1$
- QB toggles when $C=1$
- QC toggles on every clock edge

Counter Design with JK Flip-Flops

- State Diagram

Counter Design with JK Flip-Flops

- State Table

| | PS | | NS | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | A^{+} | B^{+} | C^{+} |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | X | X | X |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | X | X | X |
| 1 | 1 | 0 | X | X | X |
| 1 | 1 | 1 | 0 | 1 | 0 |

Counter Design with JK Flip-Flops

- Next State Maps

BC				
$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$				
0	1	x		
1	1	x		X

$$
\begin{aligned}
& \mathrm{A}^{+}=\mathrm{B}^{\prime}=\mathrm{D}_{\mathrm{A}} \\
& \mathrm{~B}^{+}=\mathrm{A}+\mathrm{BC}^{\prime}=\mathrm{D}_{\mathrm{B}} \\
& \mathrm{C}^{+}=\mathrm{AB} \mathrm{~B}^{\prime}+\mathrm{BC}^{\prime}=\mathrm{D}_{\mathrm{C}}
\end{aligned}
$$

	BC			
	00	01	11	10
0		X		1
1	1	X		(x)

Counter Design with JK Flip-Flops

- JK Flip-Flop Excitation Table

- Recall JK state diagram
- Create excitation table from state diagram
- $Q^{+}=J Q^{\prime}+K^{\prime} Q$

Counter Design with JK Flip-Flops

- State Variable A
- $A^{+}=B^{\prime}$

BC				
A $\begin{array}{llllll}00 & 01 & 11 & 10\end{array}$				
A	1	x	0	0
1	X	X	X	X
	$J_{A}=B^{\prime}$			

BC				
	00	01	11	10
0	X	X	x	x
1	0	X	1	X
	$\mathrm{K}_{\mathrm{A}}=\mathrm{B}$			

Counter Design with

BC				
	00	01	11	10
0	0	X	X	X
1	1	X	X	X

BC	$B=0$		$B=1$	
	00	01	11	10
0		$B^{+}=X$		$\mathrm{B}^{+}=1$
1	$\mathrm{B}^{+}=1$	$\mathrm{B}^{+}=\mathrm{X}$	$\mathrm{B}^{+}=1$	$\mathrm{B}^{+}=\mathrm{X}$

$$
\mathrm{K}_{\mathrm{B}}=\mathrm{A}^{\prime} \mathrm{C}
$$

Counter Design with
BC JK Flip-Flops

- State Variable C
- $C^{+}=A B^{\prime}+B C^{\prime}$

